
hola, estoy aprendiendo como leer una tarjeta SD
usando un microcontrolador AVR (en concreto el
atmega168pa), he comprado un modulo de lector de
tarjetas microsd, me interesa saber como funciona
este modulo que he comprado, es un circuito con
algunas resistencias y condensadores, y la parte
principal entiendo que son dos ICs que tiene, te digo
los códigos que tienen escritos encima, me interesaria
saber que hacen cada uno de los IC,

uno es: 1117-3.3 XBLW 2517A

y el otro es: SN74HC125 LX45A507

¡Perfecto! Esos dos componentes son muy típicos en los módulos de lector de
microSD para microcontroladores como tu ATmega168PA. Te explico cuál es el papel
de cada uno:

✅ 1. 1117-3.3 (AMS1117-3.3 o variante)
Marcado: 1117-3.3 XBLW 2517A
Función: Regulador de voltaje lineal de 3.3 V

✔ Qué hace

Convierte la alimentación de 5 V (la que probablemente usas con tu AVR o Arduino) a
3.3 V, que es la tensión necesaria para:

La tarjeta microSD (siempre funciona a 3.3 V)
La lógica adicional del módulo

Características típicas:
Salida fija: 3.3 V
Corriente máxima: ~800 mA (depende del fabricante)
Caída (dropout): ~1.1 V
Protecciones básicas: térmica y de sobrecorriente

Por qué está en tu módulo

20/11/25, 19:51 Función de ICs módulo microSD

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca21 1/19

Las tarjetas SD son muy sensibles al voltaje: no toleran 5 V.
El regulador se asegura de que todo el lado de la SD esté alimentado
correctamente.

✅ 2. SN74HC125
Marcado: SN74HC125 LX45A507
Función: Cuádruple buffer/bidireccional line driver con salida tri-state

En un módulo de microSD, este IC normalmente funciona como adaptador de nivel
lógico (5 V → 3.3 V).

✔ Qué hace

El SN74HC125 incluye 4 buffers independientes que:

Aceptan señales de 5 V en sus entradas
Generan señales de 3.3 V (porque está alimentado con 3.3 V del regulador)
Tienen salida tri-state, lo cual permite desconectar las líneas cuando no se usan

¿Para qué líneas?

Típicamente protege/convierte las líneas SPI:

MOSI
SCK
CS

La línea MISO suele venir directamente desde la tarjeta (que ya es 3.3 V), así que no
necesita conversión.

Por qué se usa este chip

La SD es strict 3.3 V.
Si conectas señales SPI de 5 V directamente desde un AVR, puedes dañar la tarjeta
SD.
Este buffer evita eso.

🧩 ¿Cómo se organiza todo en el módulo?

scss Copiar código

20/11/25, 19:51 Función de ICs módulo microSD

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca21 2/19

📌 Resumen
Componente Función Uso en tu módulo

1117-3.3 Regulador de 3.3 V Alimentar la tarjeta SD y la lógica

SN74HC125 Adaptador de nivel (buffers tri-
state)

Convertir señales SPI de 5 V a 3.3
V

Si quieres, puedo explicarte cómo inicializar la tarjeta SD en modo SPI, o incluso
ayudarte con código para el ATmega168PA (C o AVR-GCC). ¿Quieres avanzar hacia la
parte de software?

5V ───► AMS1117-3.3 ───► Alimentación de SD y SN74HC125 (3.3 V)

Señales SPI del microcontrolador (5V)

 └──► SN74HC125 ───► SD (3.3V)

Salida MISO de la SD (3.3V)

 └──────────────► microcontrolador (muchos AVRs lo reconocen como HIGH vá

Si, explicame como haría para leer el contenido de la
SD, me vale una lectura RAW, no necesito utilizar un
sistema de archivos, con que me expliques como leer
un byte (el primero mismamente) ya me vale.

Perfecto, te explico cómo leer un solo byte RAW de la tarjeta SD usando SPI con un
ATmega168PA, sin sistema de archivos.
Leer RAW significa simplemente pedirle a la tarjeta que te envíe un bloque de 512
bytes (sector) y tú luego coges el primer byte.

20/11/25, 19:51 Función de ICs módulo microSD

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca21 3/19

⭐ RESUMEN RÁPIDO DEL PROCESO
1. Inicializar SPI (modo 0, baja velocidad)
2. Mandar CMD0 → poner SD en modo SPI
3. Mandar CMD8 → comprobar voltaje
4. Mandar ACMD41 → inicialización
5. Mandar CMD17 → leer un bloque de 512 bytes
6. Recibir token 0xFE
7. Leer 512 bytes → el primer byte ya es tu dato
8. Ignorar CRC (2 bytes)

🔧 1. Inicializar SPI (modo SPI a baja velocidad)
Durante la inicialización la SD requiere frecuencia ≤ 400 kHz.

Enviar y recibir un byte:

🔧 2. Función para enviar comandos SD
Un comando SPI siempre tiene la forma:

c

void spi_init() {

 // MOSI, SCK, SS como salida

 DDRB |= (1<<PB3) | (1<<PB5) | (1<<PB2);

 // MISO como entrada

 DDRB &= ~(1<<PB4);

 // SPI enable, master, clock = f/128 (para ~125kHz a 16 MHz)

 SPCR = (1<<SPE) | (1<<MSTR) | (1<<SPR1) | (1<<SPR0);

}

Copiar código

c

uint8_t spi_transfer(uint8_t data) {

 SPDR = data;

 while (!(SPSR & (1<<SPIF)));

 return SPDR;

}

Copiar código

20/11/25, 19:51 Función de ICs módulo microSD

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca21 4/19

Byte 1: 0x40 | comando

Byte 2–5: argumento (4 bytes)
Byte 6: CRC (solo importa para CMD0 y CMD8)

Respuesta: un byte tipo R1 (bit7=0 cuando el byte es válido)

🔧 3. Rutina de inicialización SD en modo SPI

CMD0 – reset

Debe devolver 0x01 (idle).

CMD8 – chequeo de voltaje

c

uint8_t sd_cmd(uint8_t cmd, uint32_t arg, uint8_t crc)

{

 spi_transfer(0x40 | cmd);

 spi_transfer(arg >> 24);

 spi_transfer(arg >> 16);

 spi_transfer(arg >> 8);

 spi_transfer(arg);

 spi_transfer(crc);

 // La SD puede responder durante varios bytes, esperar hasta que bit7 s

 uint8_t r;

 for (uint8_t i=0; i<10; i++) {

 r = spi_transfer(0xFF);

 if (!(r & 0x80)) break;

 }

 return r;

}

Copiar código

c

uint8_t r = sd_cmd(0, 0, 0x95);

Copiar código

c Copiar código

20/11/25, 19:51 Función de ICs módulo microSD

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca21 5/19

ACMD41 – arrancar

Es un comando especial: primero se manda CMD55, luego CMD41.

Cuando responde 0x00, la SD está inicializada.

CMD58 – leer OCR (opcional pero recomendable)

📖 4. Leer el primer sector (LBA = 0) con CMD17

r = sd_cmd(8, 0x000001AA, 0x87);

c

do {

 sd_cmd(55, 0, 0x65);

 r = sd_cmd(41, 0x40000000, 0x77); // HCS=1

} while (r != 0x00);

Copiar código

c

sd_cmd(58, 0, 0xFD);

spi_transfer(0xFF);

spi_transfer(0xFF);

spi_transfer(0xFF);

spi_transfer(0xFF);

Copiar código

c

uint8_t read_sector_0(uint8_t *buffer) {

 uint8_t r = sd_cmd(17, 0, 0xFF); // sector 0

 if (r != 0x00) return 1; // error

 // Esperar token 0xFE

 uint8_t token;

 do {

 token = spi_transfer(0xFF);

 } while (token == 0xFF);

Copiar código

20/11/25, 19:51 Función de ICs módulo microSD

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca21 6/19

⭐ 5. Leer el primer byte
Imagina que tienes:

Ese primer byte es exactamente el byte número 0 del sector lógico 0 de la tarjeta
microSD.

🔌 Conexión de pines (SPI)
SD pin Nombre AVR pin

1 CS PB2 (SS)

2 MOSI PB3 (MOSI)

5 SCK PB5 (SCK)

7 MISO PB4 (MISO)

 if (token != 0xFE) return 2; // token incorrecto

 // Leer 512 bytes

 for (int i=0; i<512; i++) {

 buffer[i] = spi_transfer(0xFF);

 }

 // Ignorar CRC

 spi_transfer(0xFF);

 spi_transfer(0xFF);

 return 0; // OK

}

c

uint8_t sector[512];

if (read_sector_0(sector) == 0) {

 uint8_t first_byte = sector[0];

 // Aquí ya tienes el primer byte RAW de la SD

}

Copiar código

20/11/25, 19:51 Función de ICs módulo microSD

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca21 7/19

SD pin Nombre AVR pin

4 VDD 3.3 V

6 GND GND

📎 ¿Quieres que prepare un proyecto completo AVR-
GCC listo para compilar?
Puedo darte:

Makefile
main.c completo con inicialización + lectura
Código optimizado
Ejemplo de cómo imprimir el byte por UART

Solo dime qué usas: AVR-GCC + avrdude, Arduino IDE, PlatformIO, etc.

si, prepara el proyecto, uso avr-gcc + avrdude, pero no
hagas que el byte se imprima por UART, simplemente
haz que salga por el registro DDRD para que yo
conecte 8 leds en ese registro y vea el propio byte
como leds iluminados

Avr Sd Raw Project
Listo, tu proyecto AVR-GCC ya está generado en el canvas.
Si quieres, puedo añadir:

Un diagrama de conexiones
Una versión que lea cualquier sector
Una rutina para parpadear los LEDs según el byte leído
Una versión optimizada en ensamblador AVR

Solo dime.

20/11/25, 19:51 Función de ICs módulo microSD

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca21 8/19

Normalmente como se haría la lectura?? en bloques de
512 bytes o se puede cambiar para hacer lecturas mas
grandes?

En las tarjetas SD la unidad mínima e inamovible de lectura/escritura es siempre el
bloque de 512 bytes.
Esto viene definido en la especificación SD y no se puede cambiar,
independientemente del tamaño de la tarjeta o del modo (SPI o SDIO).

✅ ¿Cómo se leen normalmente los datos?

Siempre leyendo bloques de 512 bytes (sector lógico).

Cuando envías un comando para leer, la tarjeta solo puede devolver 512 bytes:

CMD17 → leer 1 bloque (512 bytes)
CMD18 → leer múltiples bloques (múltiples × 512 bytes)

❓ ¿Puedo pedir un tamaño mayor, como 1024 o 4096
bytes?
No directamente.

Lo que sí puedes hacer es:

✔ 1. Leer varios bloques seguidos

Ejemplo: leer 4096 bytes = leer 8 bloques de 512.

Puedes usar:

CMD18 (Read Multiple Blocks)

Ventaja:

Más rápido: la SD no sale del modo lectura entre bloques.

Desventaja:

Tienes que enviar CMD12 al terminar la secuencia.

20/11/25, 19:51 Función de ICs módulo microSD

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca21 9/19

🔍 ¿Existen tarjetas con bloques físicos más grandes?
Sí, internamente las tarjetas SD modernas (SDHC/SDXC) tienen páginas de 4 KB o
más, pero:

Eso no afecta a la interfaz SPI
La interfaz siempre expone sectores de 512 bytes

Incluso si el empaquetado interno es de 4096 bytes, la tarjeta traduce todo
automáticamente.

🔧 ¿Puedo cambiar el tamaño del bloque con CMD16?
Históricamente existía:

CMD16 (SET_BLOCKLEN): cambiar el tamaño del bloque

Pero:

👉 En tarjetas SDHC y SDXC CMD16 está deshabilitado

Siempre devuelven error.
Las tarjetas modernas ignoran cualquier valor que no sea 512.

Solo tarjetas SDSC antiguas (<=2GB) permitían cambiar el tamaño, pero hoy
prácticamente ya no se encuentran.

🧠 Resumen final
Pregunta Respuesta

¿Cuál es el tamaño mínimo de lectura? 512 bytes

¿Se puede leer más de 512? Sí, múltiples de 512 usando CMD18

¿Se puede cambiar el tamaño del bloque? No en SDHC/SDXC modernas

¿Qué tamaño usar en proyectos reales? Siempre 512 bytes

Si quieres, te puedo añadir al proyecto existente:

20/11/25, 19:51 Función de ICs módulo microSD

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca21 10/19

Lectura usando CMD18 (múltiples bloques)
Un buffer circular para leer secuencias largas
Un ejemplo de lectura RAW continua estilo stream

Solo dime qué necesitas.

Cual es el tiempo normal de lectura? cada llamada que
hago a "sd_read_sector_0" me tarda como unas 4
decimas de segundo, es normal?

No, 0,4 segundos por leer un solo sector (512 bytes) NO es normal.
Eso indica claramente que estás leyendo muchísimo más lento de lo que debería.

Vamos a ver cuánto debería tardar realmente:

✅ Tiempo normal de lectura de un sector SD (512
bytes)
Hay dos factores:

1. Frecuencia SPI durante lectura
Después de la inicialización, se debe aumentar el reloj SPI a:

4 MHz
8 MHz
Incluso 20–25 MHz si el cableado es corto y limpio (límite de muchas SD)

Ejemplo con 8 MHz (muy típico):

Tiempo típico:

yaml

512 bytes × 8 bits = 4096 bits

4096 bits / 8e6 = 0.000512 s = 512 microsegundos

Copiar código

20/11/25, 19:51 Función de ICs módulo microSD

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca21 11/19

👉 Lectura de un sector ≈ 0,5 ms a 1 ms

Incluso con ineficiencia, esperas:

👉 Menos de 5 ms

❌ 0,4 segundos = 400 ms → 100 veces más lento
Esto no es normal de ninguna manera.

🔍 ¿Qué está causando tu lentitud?
Casi seguro es una de estas causas:

⭐ 1. NO subiste la velocidad del SPI después de la inicialización
En tu código actual (el que está en el canvas), SPI queda fijo en:

Ese valor está bien para inicializar la SD, pero NO para leer datos.
La lectura quedará 800 veces más lenta que con SPI a 100 MHz, y unas 40–80 veces
más lenta que a 5–10 MHz.

⭐ 2. Tienes que cambiar el SPI a velocidad alta tras
sd_init()
Después de inicializar la SD, añade:

nginx

F_CPU / 128 → 125 kHz

Copiar código

💥 Resultado práctico:
≈ 0,3 a 0,5 segundos por sector
que es justo lo que estás viendo.

c

void spi_set_fast() {

 // SPI = F_CPU / 2 (SPI2X = 1)

Copiar código

20/11/25, 19:51 Función de ICs módulo microSD

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca21 12/19

Y en main() :

Esto baja el tiempo de lectura a:

👉 1 ms aprox.

⭐ 3. El módulo de la SD podría estar usando buffers
lentos (poco probable)
Los módulos con 74HC125 y AMS1117 son los más típicos y normales.
Así que no es el problema.

⭐ 4. Retrasos excesivos esperando token 0xFE
Si la SD está vieja o lenta, puede tardar un poco, pero nunca 400 ms.
Tiempos típicos de espera:

1–5 ms en SDHC modernas
10–20 ms en tarjetas viejas
100 ms máximo en casos extremos

Nunca 400 ms continuos por cada lectura.

📌 Conclusión

 SPSR |= (1<<SPI2X);

 SPCR &= ~((1<<SPR1) | (1<<SPR0)); // SPR1=SPR0=0 → F/4

 // Con SPI2X esto da F/2 → 8 MHz si tu AVR va a 16 MHz

}

c

sd_init();

spi_set_fast();

Copiar código

ruby

Lectura normal de sector: 0.5–3 ms

Tu lectura actual: 400 ms

Copiar código

20/11/25, 19:51 Función de ICs módulo microSD

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca21 13/19

✔ Solución:
Cambiar SPI de F_CPU/128 a F_CPU/2 al terminar la inicialización

Si quieres, puedo actualizar automáticamente el proyecto en el canvas con:

spi_set_fast()

Mejoras generales
Temporización más precisa
Depuración por LED si falla un comando

Solo dímelo.

=> SPI demasiado lento

Puedes modificar la funcion "sd_read_sector_0" para
pasarle el parámetro del sector que quiero leer?

Proyecto AVR: Lectura RAW de
MicroSD y salida del primer byte
por DDRD
A continuación tienes un proyecto mínimo para AVR-GCC que:

1. Inicializa SPI

2. Inicializa la tarjeta SD en modo SPI

3. Lee el sector 0 (LBA 0)

4. Muestra el primer byte leído en PORTD, configurando DDRD = 0xFF

Incluye:

Makefile

main.c

Avr Sd Raw Project Copiar Editar Descargar

20/11/25, 19:51 Función de ICs módulo microSD

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca21 14/19

📄 Makefile

📄 main.c

MCU=atmega168p

F_CPU=16000000UL

CC=avr-gcc

CFLAGS=-std=c11 -Os -DF_CPU=$(F_CPU) -mmcu=$(MCU)

OBJCOPY=avr-objcopy

TARGET=main

all: $(TARGET).hex

$(TARGET).elf: main.c

$(CC) $(CFLAGS) -o $@ $^

$(TARGET).hex: $(TARGET).elf

$(OBJCOPY) -O ihex -R .eeprom $< $@

flash: all

avrdude -p $(MCU) -c usbasp -U flash:w:$(TARGET).hex

clean:

rm -f *.elf *.hex

#include <avr/io.h>

#include <util/delay.h>

#include <stdint.h>

// =======================

// SPI

// =======================

void spi_init() {

 DDRB |= (1<<PB3) | (1<<PB5) | (1<<PB2); // MOSI, SCK,

 DDRB &= ~(1<<PB4); // MISO

 SPCR = (1<<SPE) | (1<<MSTR) | (1<<SPR1) | (1<<SPR0); /

}

uint8_t spi_transfer(uint8_t data) {

20/11/25, 19:51 Función de ICs módulo microSD

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca21 15/19

 SPDR = data;

 while (!(SPSR & (1<<SPIF)));

 return SPDR;

}

// =======================

// SD Card (modo SPI)

// =======================

uint8_t sd_cmd(uint8_t cmd, uint32_t arg, uint8_t crc) {

 spi_transfer(0x40 | cmd);

 spi_transfer(arg >> 24);

 spi_transfer(arg >> 16);

 spi_transfer(arg >> 8);

 spi_transfer(arg);

 spi_transfer(crc);

 uint8_t r;

 for (uint8_t i = 0; i < 10; i++) {

 r = spi_transfer(0xFF);

 if (!(r & 0x80)) break;

 }

 return r;

}

void sd_init() {

 // SD requiere >74 pulsos de reloj con CS alto

 PORTB |= (1<<PB2);

 for (int i=0; i<10; i++) spi_transfer(0xFF);

 // CMD0

 uint8_t r;

 do {

 PORTB &= ~(1<<PB2);

 r = sd_cmd(0, 0, 0x95);

 PORTB |= (1<<PB2);

 } while (r != 0x01);

 // CMD8

 PORTB &= ~(1<<PB2);

 sd_cmd(8, 0x000001AA, 0x87);

 spi_transfer(0xFF);

 spi_transfer(0xFF);

 spi_transfer(0xFF);

 spi_transfer(0xFF);

 PORTB |= (1<<PB2);

20/11/25, 19:51 Función de ICs módulo microSD

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca21 16/19

 // ACMD41

 do {

 PORTB &= ~(1<<PB2);

 sd_cmd(55, 0, 0x65);

 r = sd_cmd(41, 0x40000000, 0x77);

 PORTB |= (1<<PB2);

 } while (r != 0x00);

 // CMD58 (descartar OCR)

 PORTB &= ~(1<<PB2);

 sd_cmd(58, 0, 0xFF);

 spi_transfer(0xFF);

 spi_transfer(0xFF);

 spi_transfer(0xFF);

 spi_transfer(0xFF);

 PORTB |= (1<<PB2);

}

uint8_t sd_read_sector(uint32_t lba, uint8_t *buf) {

 uint8_t r;

 PORTB &= ~(1<<PB2);

 r = sd_cmd(17, lba, 0xFF);

 if (r != 0x00) { PORTB |= (1<<PB2); return 1; }

 uint8_t token;

 do {

 token = spi_transfer(0xFF);

 } while (token == 0xFF);

 if (token != 0xFE) { PORTB |= (1<<PB2); return 2; }

 for (int i=0; i<512; i++)

 buf[i] = spi_transfer(0xFF);

 spi_transfer(0xFF);

 spi_transfer(0xFF);

 PORTB |= (1<<PB2);

 return 0;

}

 uint8_t token;

 do {

 token = spi_transfer(0xFF);

20/11/25, 19:51 Función de ICs módulo microSD

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca21 17/19

 } while (token == 0xFF);

 if (token != 0xFE) { PORTB |= (1<<PB2); return 2; }

 for (int i=0; i<512; i++)

 buf[i] = spi_transfer(0xFF);

 spi_transfer(0xFF);

 spi_transfer(0xFF);

 PORTB |= (1<<PB2);

 return 0;

}

// =======================

// Main

// =======================

int main() {

 uint8_t sector[512];

 DDRD = 0xFF; // LEDs en PORTD

 spi_init();

 _delay_ms(50);

 sd_init();

 uint8_t err = sd_read_sector(0, sector);

 if (err == 0) {

 PORTD = sector[0];

 } else {

 PORTD = 0xF0; // señal de error

 }

Listo, la función sd_read_sector_0 ha sido reemplazada por la más general:

cpp

sd_read_sector(uint32_t lba, uint8_t *buf)

Copiar código

20/11/25, 19:51 Función de ICs módulo microSD

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca21 18/19

y también ajusté la llamada en main() para usar el LBA 0 como ejemplo.

Si quieres, puedo añadir también:

Versión que lea múltiples sectores (CMD18)

20/11/25, 19:51 Función de ICs módulo microSD

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca21 19/19

