20/11/25,19:51

Funcién de ICs mdédulo microSD

hola, estoy aprendiendo como leer una tarjeta SD
usando un microcontrolador AVR (en concreto el
atmega168pa), he comprado un modulo de lector de
tarjetas microsd, me interesa saber como funciona
este modulo que he comprado, es un circuito con
algunas resistencias y condensadores, y la parte
principal entiendo que son dos ICs que tiene, te digo
los codigos que tienen escritos encima, me interesaria
saber que hacen cada uno de los IC,

uno es; 1117-3.3 XBLW 2517A

y el otro es: SN74HC125 LX45A507

iPerfecto! Esos dos componentes son muy tipicos en los modulos de lector de

microSD para microcontroladores como tu ATmega168PA. Te explico cual es el papel

de cada uno:

4 1.1117-3.3 (AMS1117-3.3 o variante)
Marcado: 77717-3.3 XBLW 2517A

Funcién: Regulador de voltaje lineal de 3.3V

v Qué hace

Convierte la alimentacion de 5V (la que probablemente usas con tu AVR o Arduino) a

3.3V, que es la tensidon necesaria para:

e Latarjeta microSD (siempre funciona a 3.3 V)

e Laldgica adicional del médulo

Caracteristicas tipicas:
e Salidafija:3.3V
e Corriente maxima: ~800 mA (depende del fabricante)
e Caida (dropout): ~1.1V

e Protecciones basicas: térmica y de sobrecorriente

Por qué esta en tu médulo

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca2

1/19

20/11/25,19:51 Funcién de ICs modulo microSD
Las tarjetas SD son muy sensibles al voltaje: no toleran 5 V.
El regulador se asegura de que todo el lado de la SD esté alimentado

correctamente.

("4 2. SN74HC125

Marcado: SN74HC125 LX45A507

Funcién: Cuadruple buffer/bidireccional line driver con salida tri-state

En un médulo de microSD, este IC normalmente funciona como adaptador de nivel
l6gico (5V - 3.3V).

v Qué hace
El SN74HC125 incluye 4 buffers independientes que:

e Aceptan sefales de 5V en sus entradas
e Generan sefales de 3.3 V (porque esta alimentado con 3.3 V del regulador)

e Tienen salida tri-state, lo cual permite desconectar las lineas cuando no se usan

¢Para qué lineas?
Tipicamente protege/convierte las lineas SPI:

e MOSI
e SCK
e (CS

La linea MISO suele venir directamente desde la tarjeta (que ya es 3.3 V), asi que no
necesita conversion.
Por qué se usa este chip

La SD es strict 3.3 V.
Si conectas sefiales SPI de 5V directamente desde un AVR, puedes daiar la tarjeta
SD.

Este buffer evita eso.

% ¢Como se organiza todo en el médulo?

scss (@ Copiar cédigo

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca2 2/19

20/11/25,19:51 Funcién de ICs mdédulo microSD

5V —>» AMS1117-3.3 —>» Alimentacion de SD y SN74HC125 (3.3 V)

Sefiales SPI del microcontrolador (5V)
L—» SN74HC125 —» SD (3.3V)

Salida MISO de la SD (3.3V)
' » microcontrolador (muchos AVRs lo reconocen como HIGH vi

* Resumen

Componente Funcién Uso en tu médulo

1117-3.3 Regulador de 3.3V Alimentar la tarjeta SD y la |6gica
SN74HC125 Adaptador de nivel (buffers tri- Convertir sefiales SPIde 5V a 3.3

state) \%

Si quieres, puedo explicarte cdmo inicializar la tarjeta SD en modo SPI, o incluso
ayudarte con cédigo para el ATmega168PA (C o AVR-GCC). ;Quieres avanzar hacia la

parte de software?

@ o P aL

Si, explicame como haria para leer el contenido de la
SD, me vale una lectura RAW, no necesito utilizar un
sistema de archivos, con que me expliques como leer
un byte (el primero mismamente) ya me vale.

Perfecto, te explico c6mo leer un solo byte RAW de la tarjeta SD usando SPI con un
ATmega168PA, sin sistema de archivos.
Leer RAW significa simplemente pedirle a la tarjeta que te envie un bloque de 512

bytes (sector) y tu luego coges el primer byte.

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca2 3/19

20/11/25,19:51 Funcién de ICs mdédulo microSD

RESUMEN RAPIDO DEL PROCESO

Inicializar SPI (modo 0, baja velocidad)
Mandar CMDO - poner SD en modo SPI
Mandar CMD8 - comprobar voltaje

Mandar ACMD41 - inicializacién

Mandar CMD17 - leer un bloque de 512 bytes
Recibir token OxFE

Leer 512 bytes — el primer byte ya es tu dato
Ignorar CRC (2 bytes)

® NSO W R WDNR=R

“., 1. Inicializar SPI (modo SPI a baja velocidad)

Durante la inicializacion la SD requiere frecuencia < 400 kHz.

c @ Copiar cédigo

void spi_init() {
// MOSI, SCK, SS como salida
DDRB |= (1<<PB3) | (1<<PB5) | (1<<PB2);
// MISO como entrada
DDRB &= ~(1<<PB4);

// SPI enable, master, clock = f/128 (para ~125kHz a 16 MHz)
SPCR = (1<<SPE) | (1<<MSTR) | (1<<SPR1) | (1<<SPRO);

Enviar y recibir un byte:
c (@ Copiar cédigo
uint8_t spi_transfer(uint8_t data) {
SPDR = data;

while (!(SPSR & (1<<SPIF)));
return SPDR;

*“, 2. Funcién para enviar comandos SD

Un comando SPI siempre tiene la forma:

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca2

4/19

20/11/25,19:51 Funcién de ICs modulo microSD
e Byte 1: 0x40 | comando
e Byte 2-5: argumento (4 bytes)
e Byte 6: CRC (solo importa para CMDO y CMD8)

Respuesta: un byte tipo R1 (bit7=0 cuando el byte es valido)
C (@ Copiar codigo

uint8_t sd_cmd(uint8_t cmd, uint32_t arg, uint8_t crc)

{
spi_transfer(0x40 | cmd);

spi_transfer(arg >> 24);
spi_transfer(arg >> 16);
spi_transfer(arg >> 8);

spi_transfer(arg);
spi_transfer(crc);

// La SD puede responder durante varios bytes, esperar hasta que bit7 :
uint8_t r;
for (uint8_t i=0; i<10; i++) {
r = spi_transfer(0OxFF);
if (!'(r & 0x80)) break;
}

return r;

*“. 3. Rutina de inicializacion SD en modo SPI

CMDO - reset

C (@ Copiar codigo
uint8_t r = sd_cmd(0, 0, 0x95);

Debe devolver 0x01 (idle).

CMDS8 - chequeo de voltaje

c (@ Copiar cédigo

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca2 5/19

20/11/25,19:51 Funcién de ICs mdédulo microSD

r = sd_cmd(8, OX000001AA, 0X87);

ACMDA41 - arrancar
Es un comando especial: primero se manda CMD55, luego CMD41.
c (@ Copiar cédigo
do {
sd_cmd(55, 0, 0x65);

r = sd_cmd(41, 0x40000000, 0x77); // HCS=1
} while (r !'= 0x00);

Cuando responde 0x00, la SD esta inicializada.

CMD58 - leer OCR (opcional pero recomendable)

c (@ Copiar cédigo

sd_cmd(58, 0, OxFD);
spi_transfer (0OxFF);
spi_transfer (0OxFF);
spi_transfer (0OxFF);
spi_transfer (0OxFF);

. 4. Leer el primer sector (LBA =0) con CMD17

C (@ Copiar cédigo

uint8_t read_sector_0O(uint8_t *buffer) {
uint8_t r = sd_cmd(17, 0, OxFF); // sector 0

if (r !'= 0x00) return 1; // error

// Esperar token OXFE
uint8_t token;
do {
token = spi_transfer(0OxFF);
} while (token == OxFF);

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca2

6/19

20/11/25,19:51 Funcién de ICs mdédulo microSD

if (token !'= OxFE) return 2; // token incorrecto

// Leer 512 bytes
for (int i=0; i<512; i++) {
buffer[i] = spi_transfer(0OxFF);

// Ignorar CRC
spi_transfer (OxFF);
spi_transfer (OxFF);

return 0; // OK

5. Leer el primer byte

Imagina que tienes:
¢ (@ Copiar cédigo
uint8_t sector[512];
if (read_sector_0(sector) == 0) {

uint8_t first_byte = sector[0];
// Aqui ya tienes el primer byte RAW de la SD

Ese primer byte es exactamente el byte numero 0 del sector I6gico 0 de la tarjeta

microSD.

4, Conexion de pines (SPI)

SD pin Nombre AVR pin

1 CS PB2 (SS)

2 MOSI PB3 (MOSI)
5 SCK PB5 (SCK)
7 MISO PB4 (MISO)

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca2 7/19

20/11/25,19:51

Funcién de ICs mdédulo microSD

SD pin Nombre AVR pin
4 VDD 3.3V
6 GND GND

) ¢Quieres que prepare un proyecto completo AVR-
GCC listo para compilar?

Puedo darte:

Makefile

main.c completo con inicializacién + lectura
Cdédigo optimizado

Ejemplo de cémo imprimir el byte por UART

Solo dime qué usas: AVR-GCC + avrdude, Arduino IDE, PlatformIO, etc.

@ o P aL

Si, prepara el proyecto, uso avr-gcc + avrdude, pero no
hagas que el byte se imprima por UART, simplemente
haz que salga por el registro DDRD para que yo
conecte 8 leds en ese registro y vea el propio byte
como leds iluminados

® Avr Sd Raw Project
Listo, tu proyecto AVR-GCC ya esta generado en el canvas.

Si quieres, puedo afadir:

Un diagrama de conexiones
Una versidn que lea cualquier sector
Una rutina para parpadear los LEDs segun el byte leido

Una version optimizada en ensamblador AVR

Solo dime.

G O P

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca2

8/19

20/11/25,19:51 Funcién de ICs mdédulo microSD

Normalmente como se haria la lectura?? en bloques de
512 bytes o se puede cambiar para hacer lecturas mas
grandes?

En las tarjetas SD la unidad minima e inamovible de lectura/escritura es siempre el
bloque de 512 bytes.
Esto viene definido en la especificacion SD y no se puede cambiar,

independientemente del tamafio de la tarjeta o del modo (SPI o SDIO).

_] :Como se leen normalmente los datos?

Siempre leyendo bloques de 512 bytes (sector 18gico).

Cuando envias un comando para leer, la tarjeta solo puede devolver 512 bytes:

e CMD17 - leer 1 bloque (512 bytes)
e CMD18 - leer multiples bloques (multiples x 512 bytes)

? ¢Puedo pedir un tamafio mayor, como 1024 o 4096
bytes?

No directamente.
Lo que si puedes hacer es:

v 1. Leer varios bloques seguidos

Ejemplo: leer 4096 bytes = leer 8 bloques de 512.
Puedes usar:

CMD18 (Read Multiple Blocks)

Ventaja:

e Mas rapido: la SD no sale del modo lectura entre bloques.

Desventaja:

e Tienes que enviar CMD12 al terminar la secuencia.

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca2 9/19

20/11/25,19:51 Funcién de ICs mdédulo microSD

©, ¢Existen tarjetas con bloques fisicos mas grandes?

Si, internamente las tarjetas SD modernas (SDHC/SDXC) tienen paginas de 4 KB o

mas, pero:

e Eso no afecta a la interfaz SPI

e Lainterfaz siempre expone sectores de 512 bytes

Incluso si el empaquetado interno es de 4096 bytes, la tarjeta traduce todo

automaticamente.

“, ¢Puedo cambiar el tamaio del bloque con CMD16?

Histdricamente existia:

e CMD16 (SET_BLOCKLEN): cambiar el tamafio del bloque

Pero:

En tarjetas SDHC y SDXC CMD16 esta deshabilitado

Siempre devuelven error.

Las tarjetas modernas ignoran cualquier valor que no sea 512.

Solo tarjetas SDSC antiguas (<=2GB) permitian cambiar el tamafio, pero hoy

practicamente ya no se encuentran.

“2 Resumen final

Pregunta Respuesta

¢Cual es el tamafio minimo de lectura? 512 bytes

¢Se puede leer mas de 512? Si, multiples de 512 usando CMD18
¢Se puede cambiar el tamafio del bloque? No en SDHC/SDXC modernas

¢Qué tamafio usar en proyectos reales? Siempre 512 bytes

Si quieres, te puedo afiadir al proyecto existente:

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca2 10/19

20/11/25,19:51 Funcién de ICs modulo microSD
e Lectura usando CMD18 (multiples bloques)
e Un buffer circular para leer secuencias largas

e Un ejemplo de lectura RAW continua estilo stream

Solo dime qué necesitas.

Q6 P D

Cual es el tiempo normal de lectura? cada llamada que
hago a "sd_read_sector_0" me tarda como unas 4
decimas de segundo, es normal?

No, 0,4 segundos por leer un solo sector (512 bytes) NO es normal.

Eso indica claramente que estas leyendo muchisimo mas lento de lo que deberia.

Vamos a ver cuanto deberia tardar realmente:

\"4 Tiempo normal de lectura de un sector SD (512
bytes)

Hay dos factores:

1. Frecuencia SPI durante lectura

Después de la inicializacion, se debe aumentar el reloj SPI a:

e 4MHz
e 8MHz

e Incluso 20-25 MHz si el cableado es corto y limpio (limite de muchas SD)
Ejemplo con 8 MHz (muy tipico):

yam| (@ Copiar codigo

512 bytes x 8 bits = 4096 bits
4096 bits / 8e6 = 0.000512 s = 512 microsegundos

Tiempo tipico:

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca2 11/19

20/11/25,19:51 Funcién de ICs mdédulo microSD

Lectura de un sector=0,5ms a1 ms
Incluso con ineficiencia, esperas:

Menos de 5 ms

)£ 0,4 segundos =400 ms — 100 veces mas lento

Esto no es normal de ninguna manera.

|, ¢Qué esta causando tu lentitud?

Casi seguro es una de estas causas:

1. NO subiste la velocidad del SPI después de la inicializacién

En tu cédigo actual (el que esta en el canvas), SPI queda fijo en:

nginx (@ Copiar codigo

F_CPU / 128 - 125 kHz

Ese valor esta bien para inicializar la SD, pero NO para leer datos.
La lectura quedara 800 veces mas lenta que con SPI a 100 MHz, y unas 40-80 veces
mas lenta que a 5-10 MHz.

3 Resultado practico:
= 0,3 a 0,5 segundos por sector
gue es justo lo que estas viendo.

2. Tienes que cambiar el SPI a velocidad alta tras
sd_init()

Después de inicializar la SD, afiade:

c (@ Copiar cédigo

void spi_set_fast() {
// SPI = F_CPU / 2 (SPI2X = 1)

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca2 12/19

20/11/25,19:51 Funcién de ICs modulo microSD
SPSR |= (1<<SPI2X);
SPCR &= ~((1<<SPR1) | (1<<SPRO)); // SPR1=SPRO=0 - F/4
// Con SPI2X esto da F/2 - 8 MHz si tu AVR va a 16 MHz

Yen main() :

c @ Copiar cédigo

sd_init();

spi_set_fast();

Esto baja el tiempo de lectura a:

1 ms aprox.

3. El médulo de la SD podria estar usando buffers
lentos (poco probable)

Los médulos con 74HC125 y AMS1117 son los mas tipicos y normales.

Asi que no es el problema.

4. Retrasos excesivos esperando token OxFE

Si la SD esta vieja o lenta, puede tardar un poco, pero nunca 400 ms.

Tiempos tipicos de espera:

e 1-5msen SDHC modernas
e 10-20 ms en tarjetas viejas

¢ 100 ms maximo en casos extremos

Nunca 400 ms continuos por cada lectura.

Conclusién

ruby (@ Copiar codigo

Lectura normal de sector: 0.5-3 ms

Tu lectura actual: 400 ms

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca2

13/19

20/11/25,19:51 Funcién de ICs mdédulo microSD
=> SPI demasiado lento

v Solucion:

e Cambiar SPIde F_ CPU/128 a F_CPU/2 al terminar la inicializacién

Si quieres, puedo actualizar automaticamente el proyecto en el canvas con:
® spi_set_fast()
e Mejoras generales
e Temporizacidn mas precisa

e Depuracién por LED si falla un comando

Solo dimelo.
O 6 P L
Puedes modificar la funcion "sd_read_sector_0" para
pasarle el parametro del sector que quiero leer?
Avr Sd Raw Project Copiar Editar Descargar

Proyecto AVR: Lectura RAW de

MicroSD y salida del primer byte
por DDRD

A continuacion tienes un proyecto minimo para AVR-GCC que:

-—

. Inicializa SPI

N

. Inicializa la tarjeta SD en modo SPI
3. Lee el sector 0 (LBA 0)

4. Muestra el primer byte leido en PORTD, configurando DDRD = OxFF

Incluye:
e Makefile

® main.c

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca2 14/19

20/11/25,19:51 Funcién de ICs mdédulo microSD

Makefile

MCU=atmegal68p

F_CPU=16000000UL

CC=avr-gcc

CFLAGS=-std=cl1ll1 -0s -DF_CPU=$(F_CPU) -mmcu=$(MCU)
OBJCOPY=avr-objcopy

TARGET=main

all: S(TARGET) .hex

S (TARGET) .elf: main.c
$(CC) S$(CFLAGS) -0 $@ $°

S (TARGET) .hex: $(TARGET).elf
$(0OBJCOPY) -0 ihex -R .eeprom $< $@

flash: all
avrdude -p $(MCU) -c usbasp -U flash:w:$(TARGET) .hex

clean:
rm —-f x.elf *.hex

main.c

4

#include <avr/io.h>
#include <util/delay.h>
#include <stdint.h>

void spi_init() {
DDRB |= (1<<PB3) | (1<<PB5) | (1<<PB2); // MOSI, SCK,
DDRB &= ~(1<<PB4); // MISO

SPCR = (1<<SPE) | (1<<MSTR) | (1<<SPR1) | (1<<SPRO); /

uint8_t spi_transfer(uint8_t data) {

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca2 15/19

20/11/25,19:51

Funcién de ICs mdédulo microSD

SPDR = data;
while (!(SPSR & (1<<SPIF)));
return SPDR;

uint8_t sd_cmd(uint8_t cmd, vuint32_t arg,

spi_transfer (0x40 | cmd);
spi_transfer(arg >> 24);
spi_transfer(arg >> 16);
spi_transfer(arg >> 8);
spi_transfer(arg);
spi_transfer(crc);

uint8_t r;

for (uint8_t i = 0; i < 10;
r = spi_transfer (OxFF);
if (! (r & 0x80)) break;

}

return r;

void sd_init() {

uint8_t crc) {

// SD requiere >74 pulsos de reloj con CS alto

PORTB |= (1<<PB2);

for (int i=0; i<10; 1i++) spi_transfer (0OxFF);

// CMDO

uint8_t r;

do {
PORTB &= ~(1<<PB2);
r = sd_cmd(0, 0, 0x95);
PORTB |= (1<<PB2);

} while (r != 0x01);

// CMD8

PORTB &= ~(1<<PB2);

sd_cmd (8, 0x000001AA, Ox87);
spi_transfer (0xFF);
spi_transfer (0xFF);
spi_transfer (OxFF);
spi_transfer (OxFF);

PORTB |= (1<<PB2);

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca2

4

16/19

20/11/25,19:51 Funcién de ICs mdédulo microSD

// ACMD41
do {
PORTB &= ~(1<<PB2);
sd_cmd (55, 0, 0x65);
r = sd_cmd(41, 0x40000000, Ox77);
PORTB |= (1<<PB2);
} while (r != 0x00);

4

// CMD58 (descartar OCR)
PORTB &= ~(1<<PB2);
sd_cmd (58, 0, OxFF);
spi_transfer (0xFF);
spi_transfer (0OxFF);
spi_transfer (OxFF);
spi_transfer (OxFF);
PORTB |= (1<<PB2);

uint8_t sd_read_sector(uint32_t 1lba, uint8_t *xbuf) {
uint8_t r;

PORTB &= ~(1<<PB2);
r = sd_cmd (17, 1lba, OxFF);
if (r != 0x00) { PORTB |= (1<<PB2); return 1; }

uint8_t token;
do {

token = spi_transfer (0OxFF);
} while (token == 0xFF);

if (token != OxFE) { PORTB |= (1<<PB2); return 2; }

for (int i=0; i<512; \++)
buf[i] = spi_transfer(OxFF);

spi_transfer (OxFF);
spi_transfer (0xFF);

PORTB |= (1<<PB2);
return 0;
uint8_t token;

do {
token = spi_transfer (0OxFF);

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca2 17/19

20/11/25,19:51 Funcién de ICs mdédulo microSD

} while (token == 0xFF);

if (token != OxFE) { PORTB |= (1<<PB2); return 2; }

for (int i=0; i<512; 1++)

buf[i] = spi_transfer (0OxFF);

spi_transfer (0OxFF);
spi_transfer (OxFF);

PORTB |= (1<<PB2);

return 0;
¥
// =======================
// Main
// e

int main() {
uint8_t sector[512];

DDRD = OxFF; // LEDs en PORTD

spi_init();
_delay_ms(50);

sd_1init();

uint8_t err = sd_read_sector (0, sector);

if (err == 0) {
PORTD sector[0];
} else {
PORTD

OxFO; // seral de error

Listo, la funcidon sd_read_sector_6 ha sido reemplazada por la mas general:

cpp

sd_read_sector(uint32_t 1lba, uint8_t *buf)

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca2

(@ Copiar cédigo

18/19

20/11/25,19:51 Funcién de ICs mdédulo microSD

y también ajusté la llamada en main() para usar el LBA 0 como ejemplo.
Si quieres, puedo afiadir también:

e Versién que lea multiples sectores (CMD18)

https://chatgpt.com/c/691f2556-0f10-832d-82b4-a8afc9ecca2 19/19

